Lift calculations based on accepted wake models for animal flight are inconsistent and sensitive to vortex dynamics.
نویسندگان
چکیده
There are three common methods for calculating the lift generated by a flying animal based on the measured airflow in the wake. However, these methods might not be accurate according to computational and robot-based studies of flapping wings. Here we test this hypothesis for the first time for a slowly flying Pacific parrotlet in still air using stereo particle image velocimetry recorded at 1000 Hz. The bird was trained to fly between two perches through a laser sheet wearing laser safety goggles. We found that the wingtip vortices generated during mid-downstroke advected down and broke up quickly, contradicting the frozen turbulence hypothesis typically assumed in animal flight experiments. The quasi-steady lift at mid-downstroke was estimated based on the velocity field by applying the widely used Kutta-Joukowski theorem, vortex ring model, and actuator disk model. The calculated lift was found to be sensitive to the applied model and its different parameters, including vortex span and distance between the bird and laser sheet-rendering these three accepted ways of calculating weight support inconsistent. The three models predict different aerodynamic force values mid-downstroke compared to independent direct measurements with an aerodynamic force platform that we had available for the same species flying over a similar distance. Whereas the lift predictions of the Kutta-Joukowski theorem and the vortex ring model stayed relatively constant despite vortex breakdown, their values were too low. In contrast, the actuator disk model predicted lift reasonably accurately before vortex breakdown, but predicted almost no lift during and after vortex breakdown. Some of these limitations might be better understood, and partially reconciled, if future animal flight studies report lift calculations based on all three quasi-steady lift models instead. This would also enable much needed meta studies of animal flight to derive bioinspired design principles for quasi-steady lift generation with flapping wings.
منابع مشابه
Direct Numerical Simulation of the Wake Flow Behind a Cylinder Using Random Vortex Method in Medium to High Reynolds Numbers
Direct numerical simulation of turbulent flow behind a cylinder, wake flow, using the random vortex method for an incompressible fluid in two dimensions is presented. In the random vortex method, the primary variable is vorticity of the flow field. After generation on the cylinder wall, it is followed in two fractional time step in a Lagrangian system of coordinates, namely convection and diffu...
متن کاملAnalysis of Flow Pattern with Low Reynolds Number around Different Shapes of Bridge Piers, and Determination of Hydrodynamic Forces, using Open Foam Software
In many cases, a set of obstacles, such as bridge piers and abutments, are located in the river waterway. Bridge piers disrupt river’s normal flow, and the created turbulence and disturbance causes diversion of flow lines and creates rotational flow. Geometric shape and position of the piers with respect to flow direction and also number of piers and their spacing are effective on changing the ...
متن کاملTomographic particle image velocimetry of desert locust wakes: instantaneous volumes combine to reveal hidden vortex elements and rapid wake deformation.
Aerodynamic structures generated by animals in flight are unstable and complex. Recent progress in quantitative flow visualization has advanced our understanding of animal aerodynamics, but measurements have hitherto been limited to flow velocities at a plane through the wake. We applied an emergent, high-speed, volumetric fluid imaging technique (tomographic particle image velocimetry) to exam...
متن کاملA Model for Runway Landing Flow and Capacity with Risk and Cost Benefit Factors
As the demand for the civil aviation has been growing for decades and the system becoming increasingly complex, the use of systems engineering and operations research tools have shown to be of further use in managing this system. In this study, we apply such tools in managing landing operations on runways (as the bottleneck and highly valuable resources of air transportation networks) to handle...
متن کاملVortex-wake interactions of a flapping foil that models animal swimming and flight.
The fluid dynamics of many swimming and flying animals involves the generation and shedding of vortices into the wake. Here we studied the dynamics of similar vortices shed by a simple two-dimensional flapping foil in a soap-film tunnel. The flapping foil models an animal wing, fin or tail in forward locomotion. The vortical flow induced by the foil is correlated to (the resulting) thickness va...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Bioinspiration & biomimetics
دوره 12 1 شماره
صفحات -
تاریخ انتشار 2016